There are important features of cubic functions and their graphs:

 $f(y) = x^3$ Page 93

• All cubic functions have a **domain** consisting of all real numbers and a **range** consisting of all real numbers.

- The graphs of cubic functions have turning points where the curve changes from increasing to
 decreasing (relative or local maximum) or from decreasing to increasing (relative or
 local minimum).
- A cubic function can have zero or two turning points.
- Cubic functions also always have one point of inflection where the function changes curvature, from hill to bowl or from bowl to hill.
- The x-intercept is the point(s) where the graph crosses the x-axis. The y-intercept is the point where the graph crosses the y-axis. There can be one, two, or three x-intercepts but only one y-intercept on the graph of a cubic function.

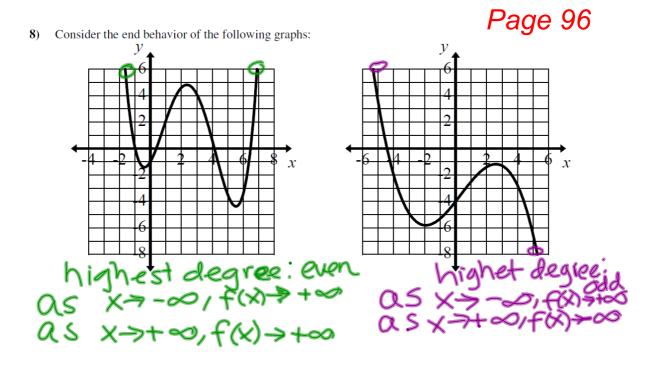
leading coefficient: The number in front of the variable with highest degree.

Graph:

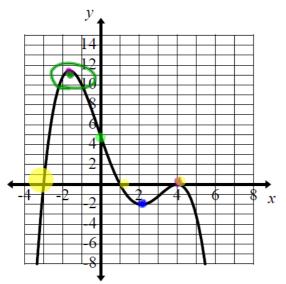
 $(x) = x^4 + 2x + 3$

both arows

 $f(x) = -x^2 + 4$

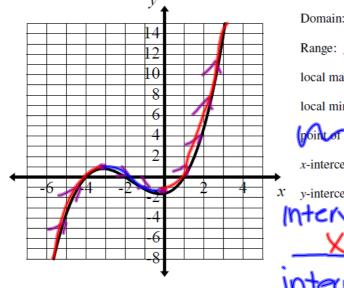

both arrows Point down Right

 $f(x) = 2x^{3} - 6x^{2} + x - 1$


in different direction

 $f(x) = -3x^{5} + 3x^{4} + 1$

End Behavior: $\alpha \le X \ge -\infty$, $f(X) \ge -\infty$ $\alpha \le X \ge +\infty$, $f(X) \ge -\infty$ [Shades] [Pof-Trace] [?]



9) Consider the graph of the function $f(x) = -0.1 \bigcirc 0.6x^3 + 0.3x^2 - 5.6x + 4.8$. Identify the following:

- Domain: Range: _ local maximum:
- (2.14, -2.03)local minimum: point of inflection; x-intercept(s): _ y = 4.8y-intercept: _ Degree:
- Lead Coefficient: End Behavior:

10) Consider the graph of the function $f(x) = 0.2x^{2} + x^{2} + 0.4x - 1.6$ Identify the following: Page 97

Domain: _ Range: _

(-3.12, 0.81)local maximum:

(-0.21, -1.64)local minimum:

point of inflection: x = 1, -2, -4x-intercept(s): _

y-intercept: